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In this project [3] we develop and test a hy-
brid multiscale method for coupling atomistic
and continuum models. We perform Monte
Carlo (MC) simulation for random walk in mi-
croscale domains and solve the diffusion equa-
tion on the macroscale. The numerical results de-
pend strongly on the efficient and stable coupling
between the microscale and macroscale solvers.
The present work gives the principles of the tech-
nique and shows the potential for future practical
applications, e.g. interface tracking for epitaxial
growth of thin films and complex fluids.

Multiscale modeling that couple atomistic and
continuum simulations has recently become one
of the most active research areas in applied sci-
ence. With rapidly growing computing power,
we are more capable of modeling the details of
physical process. Meanwhile, several multiscale
methods have been proposed to design efficient
numerical methods for bridging the differences
between long and short time or space scales, such
as heterogeneous multiscale method (HMM) in-
troduced by E and Engquist [1] and patch dy-
namics designed by Kevrekidis, Gear and etc
[4][2]. When successfully applied, these methods
can use microscopic descriptions of a problem to
create a system-level framework that helps pre-
dict macroscopic properties from direct numeri-
cal simulations of relevant microscopic models.

The basic setup in present project is following.
Suppose we have a set of variablesU(x, t) to de-
scribe the macroscale process at timet. To com-
pute the macroscopic variables at the next time
step t + ∆t, we extract the data needed in the
macroscale solver, for example the particle flux,
from the microscopic model. In order for the mi-
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Figure 1. One-dimensional physical system [2].
The microscale variable u(x) varies rapidly, but
the macroscopic-averaged variables U= (〈u〉,
〈ux〉, 〈uxx〉 and so on) vary slowly. The bound-
ary conditions for the microscale solvers are de-
fined in the buffer regions surrounding each mi-
croscale domains. The communication between
the macroscale and microscale models is per-
formed in the buffer regions.

croscale statesu to be consistent with the local
macroscale statesU , certain constraints are im-
posed in the microscopic model, usually through
the imposition of some boundary conditions. The
microscopic data are then processed using statis-
tical averaging to provide the needed macroscale
data. These data are finally feeded back to the
macroscale solver andU(x, t +∆t) are calculated.

The key to the feasibility and efficiency of such
an approach is the possibility that the microscale
model does not need to be solved over the whole
computational domain, but rather over a small re-
gion near the interface where data estimation is
carried out; see Figure 1. Furthermore, the sepa-
ration of the macroscopic and microscopic scales
of the system is also an advantage of this ap-
proach.

Algorithm
Step 0: Set up the microscale grids with length

scale δx and the macroscale grids with length
scale∆x. Both microscale and macroscale initial
data are defined at grid points.
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Step 1: Define the buffer region which covers
several microscale grid sizes in one macroscale
cell at the interface between the two different
scales. The information transformation from the
macroscale to the microscale models will be per-
formed here.

Step 2: Advance the macroscale model for one
macroscale time step∆t to obtain solutionUn.
Standard finite difference or finite volume method
can be used to solve the diffusion equation.

Step 3: With macroscopic solutionUn−1 and
Un, reconstruct the microscale initial and bound-
ary conditions for each MC simulation to match
the average macroscale quantities in the buffer re-
gion. The interpolation in both time and space
for macroscale states are needed. The microscale
boundary conditions agree statistically with the
macroscale interpolant. Here the macroscale pro-
vides information for the microscale.

Step 5: Advance the microscale model via MC
simulation for one macro-step∆t, which takes
many small micro-stepsδt.

Step 6: In the microscale region close to the
interface, we compute the particle fluxFn or the
local average of the microscale solutionu(x) to
define the macroscale interface/boundary condi-
tions for the macroscopic model. This is the step
where the microscale supplies information to the
macroscale.

Step 7: Stop if the desired time is reached in
the macroscopic model. Otherwise, repeat from
Step 2 using the new fluxFn to replace the fi-
nite difference or using the local average as the
Dirichlet boundary condition in the finite differ-
ence scheme to advance the macroscopic solution
to timetn+1. �

In Figure 2, agreement between the hybrid re-
sults and the true solution is excellent at all time
in both cases (b) and (d), which indicates the ef-
ficacy of the coupling atomistic and continuum
simulations.
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Figure 2. Results at different times. In each panel
the true solutions are dashed curves. In (a) and
(b), we show the growth of an initial zero concen-
tration profile. In (c) and (d), we show the decay
of an initial Gaussian concentration profile. In
(a) and (c), we perform the full MC simulation
with δx = 0.002. In (b) and (d), we solve hybrid
models with macroscale grid size∆x = 0.01 and
microscale grid sizeδx= 0.002; MC is performed
on regions(0.2,0.4) and(0.6,0.8) and the diffu-
sion equation is solved on other regions.
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